Vistas de página en total

lunes, 7 de septiembre de 2015

Seres Vivos

ESTAS SON OTRAS CARACTERÍSTICAS DE LOS SERES VIVOS, AQUÍ LAS PRESENTO:


Autopoiesis

Una forma alternativa de definir a los seres vivos es mediante el concepto de autopoiesis, introducido por los doctores Humberto Maturana y Francisco Varela. La idea es definir a los sistemas vivientes por su organización más que por un conglomerado de funciones. Un sistema se define como
autopoiético cuando las moléculas producidas generan la misma red que las produjo y especifican su extensión. Los seres vivos son sistemas que viven mientras conserven su organización. Todos sus cambios estructurales son para adaptarse al medio en el cual ellos existen. Para un observador externo al sistema, esta organización aparece como auto-referida. Las células son los únicos sistemas vivos primarios, es decir aquellos capaces de mantener su autopoiesis en forma autónoma. Los organismos pluricelulares formados por células poseen características similares a las de las células, particularmente el estado estable, pero su vida les es concedida por la organización autopoiética de las células que los constituyen.



Los virus, un caso especial

Reconstrucción de un rota virus.
Los virus cumplen con algunas de estas características (materia organizada y compleja, reproducción y evolución), pero no tienen metabolismo ni desarrollo. Hay cierto consenso en no considerarlos organismos aunque aún hay quien discrepa sobre la cuestión. Si consideramos que la característica básica de un ser vivo es tener descendencia y evolucionar, también los virus podrían considerarse seres vivos, pero si añadimos la posesión de un metabolismo y la capacidad de desarrollo, entonces no. Si definimos a la vida como un sistema con autopoiesis, la polémica si un virus es un ser viviente se resuelve con este concepto, ya que el virus no cuenta con una organización material autopoiética.



Duración de la vida
Uno de los parámetros básicos del organismo es su longevidad. Algunos animales viven tan poco como un día, mientras que algunas plantas pueden vivir millares de años. El envejecimiento puede utilizarse para determinar la edad de la mayoría de los organismos, incluyendo las bacterias.



Composición química de los seres vivos

El protista Ameba proteos (ameba) es un organismo eucarionte que vive libre en agua dulce. Mide unos 500 µm.
Los organismos son sistemas físicos soportados por reacciones químicas complejas, organizadas de manera que promueven la reproducción y en alguna medida la sostenibilidad y la supervivencia.16 Los seres vivos están integrados por moléculas inanimadas; cuando se examinan individualmente estas moléculas se observa que se ajustan a todas las leyes físicas y químicas que rigen el comportamiento de la materia inerte y las reacciones químicas son fundamentales a la hora de entender los organismos, pero es un error filosófico (reduccionismo) considerar a la biología como únicamente física o química. También juega un papel importante la interacción con los demás organismos y con el ambiente. De hecho, algunas ramas de la biología, por ejemplo la ecología, están muy alejadas de esta manera de entender a los seres vivos.


Elementos químicos

La materia viva está constituida por unos 60 elementos, casi todos los elementos estables de la Tierra, exceptuando los gases nobles. Estos elementos se llaman bioelementos o elementos biogénicos. Se pueden clasificar en dos tipos: primarios y secundarios.

Los elementos primarios son indispensables para formar las biomoléculas orgánicas (glúcidos, lípidos, proteínas y ácidos nucléicos). Constituyen el 96,2 % de la materia viva. Son el carbono, el hidrógeno, el oxígeno, el nitrógeno, el fósforo y el azufre.

Los elementos secundarios son todos los bioelementos restantes. Existen dos tipos: los indispensables y los variables. Entre los primeros se encuentran el calcio, el sodio, el potasio, el magnesio, el cloro, el hierro, el silicio, el cobre, el manganeso, el boro, el flúor y el yodo.








Macro moléculas

Los compuestos orgánicos presentes en la materia viva muestran una enorme variedad y la mayor parte de ellos son extraordinariamente complejos. A pesar de ello, las macro moléculas biológicas están constituidas a partir de un pequeño número de pequeñas moléculas fundamentales (monómeros), que son idénticas en todas las especies de seres vivos. Todas las proteínas están constituidas solamente por 20 aminoácidos distintos y todos los ácidos nucleicos por cuatro nucleótidos. Se ha calculado que, aproximadamente un 90 % de toda la materia viva, que contiene muchos millones de compuestos diferentes, está compuesta, en realidad por unas 40 moléculas orgánicas pequeñas.


La mayor parte de las macro moléculas biológicas que componen los organismos pueden clasificarse en uno de los siguientes cuatro grupos: ácidos nucleicos, proteínas, lípidos y glúcidos.


--- Ácidos nucleicos
Los ácidos nucleicos (ADN y ARN) son macro moléculas formadas por secuencias de nucleótidos que los seres vivos utilizan para almacenar información. Dentro del ácido nucleico, un codón es una secuencia particular de tres nucleótidos que codifica un aminoácido particular, mientras que una secuencia de aminoácidos forma una proteína.


Proteínas
Las proteínas son macro moléculas formadas por secuencias de aminoácidos que debido a sus características químicas se pliegan de una manera específica y así realizan una función particular. Se distinguen las siguientes funciones de las proteínas:

Enzimas, que catalizan las reacciones metabólicas.
Proteínas estructurales, por ejemplo, la tubulina y el colágeno.
Proteínas reguladoras, por ejemplo, la insulina, la hormona del crecimiento y los factores de transcripción que regulan el ciclo de la célula.
Proteínas señaliza doras y sus receptores, tales como algunas hormonas.
Proteínas defensivas, por ejemplo, los anticuerpos del sistema inmune y las toxinas. Algunas veces las toxinas contienen aminoácidos inusuales tales como la canavanina.

Lípidos
Los lípidos forman la membrana plasmática que constituye la barrera que limita el interior de la célula y evita que las sustancias puedan entrar y salir libremente de ella. En algunos organismos pluricelulares se utilizan también para almacenar energía y para mediar en la comunicación entre células.


Glúcidos
Los glúcidos (o hidratos de carbono) son el combustible básico de todas las células; la glucosa está al principio de una de las rutas metabólicas más antiguas, la glucólisis. También almacenan energía en algunos organismos (almidón, glucógeno), siendo más fáciles de romper que los lípidos, y forman estructuras esqueléticas duraderas, como la celulosa (pared celular de los vegetales) o la quitina (pared celular de los hongos, cutícula de los artrópodos).



Estructura

Todos los organismos están formados por unidades denominadas células; algunos están formados por una única célula (unicelulares) mientras que otros contienen muchas (pluricelulares). Los organismos pluricelulares pueden especializar sus células para realizar funciones específicas. Así, un grupo de tales células forma un tejido. Los cuatro tipos básicos de tejidos en los animales son: epitelio, tejido nervioso, músculo y tejido conjuntivo. En las plantas pueden distinguirse tres tipos básicos de tejidos: fundamental, epidérmico y vascular. Varios tipos de tejido trabajan juntos bajo la forma de un órgano para producir una función particular (tal como el bombeo de la sangre por el corazón o como barrera frente al ambiente como la piel). Este patrón continúa a un nivel más alto con varios órganos funcionando como sistema orgánico que permiten la reproducción, digestión, etc. Muchos organismos pluricelulares constan de varios sistemas orgánicos que se coordinan para permitir vida.



----- Células vegetales. Dentro de estas y en color verde se aprecian los cloroplastos.
La célula
La teoría celular, propuesta en el año 1839 por Schleiden y Schwann, establece que todos los organismos están compuestos de una o más células; todas las células provienen de otras células preexistentes; todas las funciones vitales de un organismo ocurren dentro de las células, y las células contienen información hereditaria necesaria para las funciones de regulación de la célula y para transmitir información a la siguiente generación de células.

Todas las células tienen una membrana plasmática que rodea a la célula, separa el interior del medio ambiente, regula la entrada y salida de compuestos manteniendo de esta manera el potencial de membrana, un citoplasma salino que constituye la mayor parte del volumen de la célula y material hereditario (ADN y ARN).



Según la localización y la organización del ADN se distinguen dos tipos de células:

-- Células procariotas (de los organismos procariontes), que carecen de membrana nuclear por lo que el ADN no está separado del resto del citoplasma.
-- Células eucariotas (de los organismos eucariontes), que tienen un núcleo bien definido con una envoltura que encierra el ADN, que está organizado en cromosomas.
Todas las células comparten varias habilidades:

---- Reproducción por división celular (fisión binaria, mitosis o meiosis).
Uso de enzimas y de otras proteínas codificadas por genes del ADN y construidas vía un ARN mensajero en los ribosomas.
Metabolismo, incluyendo la obtención de los componentes constructivos de la célula y energía y la excreción de residuos. El funcionamiento de una célula depende de su capacidad para extraer y utilizar la energía química almacenada en las moléculas orgánicas. Esta energía se obtiene a través de las cadenas metabólicas.
Respuesta a estímulos externos e internos, por ejemplo, cambios de temperatura, PH o niveles nutrientes.



---- Simetría corporal
Es la disposición de las estructuras corporales respecto de algún eje del cuerpo. Se clasifican en:

--- Asimétrica: cuando no presentan una forma definida, como las amebas.
Radial: es presentada por organismos en forma de rueda o cilindro y sus partes corporales parten de un eje o punto central. Ejemplo: los erizos y las estrellas de mar.
Bilateral: la presenta la mayoría de los seres vivos, es aquella en la cual al pasar un eje por el centro del cuerpo se obtienen dos partes equivalentes. Ejemplo: los vertebrados.

No hay comentarios:

Publicar un comentario